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Abstract: This paper presents a sensor validation scheme capable of detecting failed
sensor hardware without sensor redundancy and during non-steady state monitoring
conditions. The technical approach utilizes neural networks and fuzzy logic to accomplish
the desired goal. Neural networks are used to recognize the non-linear, inter-relationships
between the different types of sensors used in a transient or steady-state measurement
environment. Fuzzy logic is used to pre- and post-process the measurement data in order
to determine general characteristics about the state of the process being monitored.
Different types of neural network architectures were developed and tested to determine
their suitability to solving this problem. The feasibility of the method was proven through
computer simulation utilizing gas turbine engine data as input to the validation system.
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Introduction: Integrated sensor systems play a major role in the rapidly expanding area of on-
line diagnostics and condition monitoring of all types of industrial, commercial and military
equipment. After all, without accurate and reliable information on the equipment being
monitored, it is impossible to diagnose the machines current condition or "health" in order to
make informed maintenance and safety decisions.

Numerous sensor validation and recovery systems have been developed and tested over the
years to separate failed sensor hardware from "real" equipment malfunctions [1-6]. In
particular since 1980, when a ground test of the Space Shuttle main engine experienced
erroneous combustion chamber pressure measurements that were used in the closed-loop
thrust level control algorithm [7]. In this case, the failed pressure sensor led to running the
engine in a severely abnormal operating condition, and nearly self-destroyed the engine.
Following that incident, sensor validation and recovery research has focused primarily on
utilizing sensor redundancy and knowledge-based systems that operate well under steady-state
conditions [8-11]. Today, with the increased application of neural networks to solve non-
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linear, pattern recognition problems, non-redundant equipment sensor patterns can be
"learned" by dedicated neural networks to detect and isolate sensor failures. The additional
advantage of utilizing neural networks is reducing the dependency on redundant sensors and
steady-state operating conditions.

Algorithms designed to perform non-redundant sensor validation in transient monitoring
environments are based on the principal that the various sensors used in a particular application
are non-linearly related over a particular speed/power range. For example, if a machine is
increasing in speed and power, then the temperatures, pressures, etc. are related to each other
in some non-linear sense. Neural networks would appear to be a good tool for solving this
type of problem because of their non-linear, pattern recognition and classification qualities. In
addition, fuzzy logic was chosen as the best tool for deciding if the speed/power range of the
equipment is increasing, decreasing, or in a steady-state condition and whether the sensor
confidence level output of the neural networks depicts a good, bad, or marginal sensor
condition.

Neural Networks for Non-Linear Pattern Recognition: Neural networks are systems of
elemental processing units connected in a way analogous to how neurons are connected in the
brain. Like the brain, neural networks exhibit learning and associative memory skills. A neural
network is trained to perform a task by showing it examples of an input it will receive, paired
with the output it is to deliver. The network learns the associations between these pairs of
input examples and corresponding outcomes, and is able not only to reproduce these
associations, but also to generalize these relationships for inputs that it has not encountered
before. Neural nets are therefore capable of intelligent interpolation and therefore make them
particularly well suited for this type of application.

The artificial neural network can be viewed as a collection of elemental processing units
massively interconnected among themselves. Some of the processing units, sometimes called
nodes, communicate with the outside environment. We distinguish between the different types
of processing units with the following nomenclature:

1.) Input Nodes: Receive signal from the environment

2.) Output Nodes: Send signals to the environment

3.) Hidden Nodes: No direct contact with the environment

The processing unit or node is the component within neural networks where the computations
are carried out. Theinput signal come from either the environment or other processing units,
and form an input vector containing all the inputs. Figure 1 is an illustration of one processing
unit or node.
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Figure 1 Neural Network Processing Unit

Figure 1 also shows weights corresponding to each input. These weights are used to compute
the output value of the processing unit. This computation is performed by taking the product
of each input value xi and its corresponding weight wi. These products are then summed
together and "passed" through a sigmoidal activation function to determine its final output
activation level. Other types of activation function can be used, but the sigmoid is the most
commonly used function.

When we talk about neural network's abilities to learn cause and effect relationships, we are
really discussing the supervised learning procedure. Supervised learning involves the task of
teaching the network associated input/output pairs. The network is presented with data that
show. what response (o itput) should be generated by a given stimulus (i4,put). The network
then self adjusts its internal parameters in order to represent this underlying relationship
between the inputs and outputs. This is the basis for a neural network's ability to generate
appropriate outputs for all other inputs of a similar category, even if these inputs have never
been previously encountered. '

Supervised learning is commonly implemented using a Generalized Delta Rule network
architecture with backpropagation of error. During this procedure, the network architecture is
specified in terms of the number of input and output nodes, as well as hidden layer nodes. The
training set is then used to specify what target outputs should result from an input pattern, and
the network automatically learns the set of parameters (weights and thresholds) that will
generate this desired output. In this learning procedure, the network learns a single set of
network parameters that satisfies all the training input/output pairs. The learning is not perfect,
but is optimum on the basis of the least mean square error. In the consulting mode, the
network is able to generalize and generate appropriate output patterns for any input pattern



applied to the network. This attribute is the principal advantage to utilizing neural networks in
condition monitoring applications.

Fuzzy Logic for Approximate Reasoning: Fuzzy logic is a programming tool that is capable
of incorporating imprecise or ambiguous information into algorithmic expressions. However,
contrary to its name "fuzzy", the mathematics involved are based on precise and rigorous
calculations with respect to fuzzy sets or membership functions. The four basic processes
required to develop fuzzy logic systems are fuzzification, rulebase development, inference, and
defuzzification. The fuzzification process begins with the development of membership
functions which relate linguistic variables like "cool", "hot", and "cold" to particular numerical
ranges used in the "fuzzy" calculations. For instance, "cool" might have a membership value of
1.0 (the highest degree of membership) for 60 degrees F, a membership of 0.6 for 50 degrees
F, a membership of 0.25 for 40 degrees F, and a membership of 0.0 (no degree of membership)
for 30 degrees F.

The rulebase development is typical of any if~then rule set ir-olemented in standard expert
systems, except the rules now incorporate the "fuzzy" linguistic variables that have membership
functions associated with them. An example of a rule would be; If temperature is cool Then
velocity is medium.' In this rule, temperature is the input variable and velocity is the output
variable, both or which have membership functions associated with them that include cool and
medium respectively.

The strategies for "inferring" conclusions/decisions from cause-and-effect relationships
provided by the rulebase and membership functions (knowledge base) are often called fuzzy
inference techniques. Some inference techniques include; Product-Sum, Max-Min, and Mnm-
Sum. The first expression of the inference technique name refers to the method for scaling the
membership function variables. The second expression refers to the technique for combining
the scaled membership function variables. A more complete description of the inference
techniques is given in Reference [12]. The final process of calculating a single value from the
scaling and combining of the variables descnlied in the membership functions is called
defuzzification. Techniques such as Centroid, Max-height, and Max-moment are used to
determine the value that best represents the outcome of the fuzzy rule evaluations.

Sensor Validation System Architecture: The sensor validation system architecture involves
the integration of the neural networks, fuzzy logic, and miscellaneous arithmetic and logic
operations. A block diagram of the basic system architecture is given in Figure 2. The
speed/power sensor data is first accepted by two parallel fuzzy logic modules. The first
module determines the state of the speed/power condition (i.e increasing, decreasing, or
steady-state) and the second verifies the validity of speed/power sensor itself The output of
the speed/power condition module triggers a particular neural network module that was
specifically trained to know the sensor relationships for either increasing, decreasing or steady
power output. Only one neural network module is triggered at a time, depending on the
outcome of the prior fuzzy logic decisions. The sensor confidence values predicted by the



neural networks are trended over time and passed through another fuzzy logic module to
interpret the results. These extra steps are used to ensure that false alarms do not occur.

For the gas turbine engine application discussed in this paper, there are four primary
performance related sensors that are monitored during turbine operation. These sensors
include; fuel flow (Wf), HP compressor delivery pressure (P3), LP compressor delivery
temperature, and Jet Pipe temperature (T6). The outputs of the rieural networks yield a
confidence factor associated with the probability of a failed sensor. A confidence factor near
one represents proper sensor operation, while a confidence factor near zero indicates a faulty
sensor mode. A fuzzy logic module is used at the output of these neural networks to decide
whether the sensor is good, bad, or somewhere in between. For instance, if a hard decision
was utilized to alert the crew when a sensor confidence factor reached a level less than 0.80,
false alarms would likely occur even though a sensor confidnce factor of 0.78 might still
indicate a properly working sensor.

The same reasoning applies for using fuzzy logic as a pre-processor for the neural network in
terms of determining the speed direction. When examining the difference in speed change
based on several different time differences, speed changes approximately near zero would
indicate a steady-state operating condition. By implementing fuzzy logic, the "approximately
near zero" term can be accounted for in algorithmic expressions.

Neural Network Architecture and Training: Two different neural network architectures
were examined for this application. Both networks utilized a multi-layered, feed-forward
architecture with five input nodes and four output nodes. The first network contained one
hidden layer with 13 nodes and the second used 2 hidden layers with 10 and 5 nodes
respectively. Figure 3 is an illustration of the neural network with only one hidden layer and 13
nodes.

Determini g the "'¾ptimal" number of hidden layers and nodes for each networ is a non-trivial
task and depends on many factors, some of which include; number of input/output nodes,
quantity and accuracy of training data, complexity of problem, and resulting network
generalization performance. The "standard" feed-forward architectures used for this problem
were picked due to the large quantity of training data available and the resulting network
generalization performance required.
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The simulated gas turbine engine data used to train the neural network architectures is given in
Figure 4. The data set represents sensed fuel flow, pressure, and temperature readings during a
start-up condition. Simultaneously measured data staying within the illustrated confidence
limits for each sensor would represent properly operating sensors. Data going outside these
limits would indicate a failure mode associated with the particular sensor. For training
purposes, any measurement within the confidence limits of each sensor for a particular engine
speed would indicate a sensor confidence level of 1.0 (highest confidence). As a sensor
measurement moves outside the confidence limits, the neural network output confidence level
decreases from 1.0 towards 0.0 indicating the graduating sensor failure mode. Each network
architecture was subjected to the same training data set consisting of 300 input/output pairs.

Training the sensor validation networks was accomplished with a supervised learning
procedure. Each of the 300 training pairs or patterns used duniýý , the training process
consisted of 5 sensor input signals and it's corresponding set of 4 outputs sensor confidence
factors. The input and output training data was normalized to values between 0 and 1. An
error-back-propagation algorithm was used to minimize the mean-squared error between the
actual network output and the target values set by the training set. Training parameters such as
the learning rate, gain of the activation function, and momentum coefficient were adapted
during the training session to aid in minimizing the error. A final RMS error associated with
all training pairs was reduced to 0.199.
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Figure 4 Gas Turbine Measurement Data

7



Neural Network Results: A computer generated data file simulating normal and faulty
sensor measurements was developed to test the accuracy of the two neural network
architectures. Figure 5 is an illustration of a small section of that file including a range of fuel
flow measurement data. The data represented by the + signs are all within the confidence limits
of normal operating sensor patterns. In this case, sensor confidence levels predicted by the
neural network should all be close to one. The data indicated by X's and O's are outside the
confidence linmits and therefore indicate worsening sensor operation. The X's are just outside
the confidence limits and should predict sensor confidences between zero and one. The O's are
significantly outside the sensor confidence band and should predict sensor confidence levels
close to zero. The results from this data file are given in Table 1 below. Note, the other
sensor measurements including temperatures, pressure, and speed were all within the
confidence limits shown in Figure 4.
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Table 1 Neural Network Results

Case # "+" "X" "0"
1 0.9197 0.2711 0.0755
2 0.9990 0.1674 ,- 0.0543
3 0.9990 0.2625 0.0923
4 0.9861 0.7777 0.0500
5 0.9990 0.7700 0.0923
6 0.9990 0.7852 0.1061
7 0.9756 0.2378 0.4670
8 0.9112 0.1263 0.0380
9 0.9734 0.8133 0.1389
10 0.9723 0.3508 0.1736
11 0.8831 0.9244 0.4835
12 0.9259 0.9549 0.4616
13 0.8556 0.6185 0.2459
14 0.9345 0.9057 0.0980
15 0.9057 0.7111 0.1866

Note: The network output confidence levels for the other sensors were all above 0.975 for
"+" test cases, above 0.927 for the "x" test cases, and above 0.946 for the "o" test
cases.

Several test cases similar to the results described in Table 1 were conducted for the other
sensor measurements, all yielding similar results. Although the trained network yielded good
results in terms of accuracy and generalization capabilities, overtraining was a concern that was
monitorJd carefully. Initial'y, 600 training patterns were used to train the network with output
error similar to the 300 training pattern case. The resultant trained network had much worse
generalizing capabilities than the network trained with only 300 patterns.

The network architecture with two hidden layers was trained and tested with the same data as
used for the previous single hidden layer network. In this case, the output RMS error was
only reduced to 0.289 and the network generalization capability degraded. The worsened
generalization capability can be explained by the additional degrees of freedom that were
introduced by the additional nodes (neurons) in the hidden layers. The higher network RMS
error is most likely due to finding a "local" minimum associated with the gradient decent BPE
algorithm. In theory, the error should have been reduced to at least the level of the previous
single hidden layer network.
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Conclusions: A sensor validation scheme was presented for checking sensor hardware
operation without the need for sensor redundancy and during transient equipment monitoring
conditions. Fuzzy logic and neural networks were applied to meet the non-linear and non-
exact nature of this problem. Fuzzy logic modules were used to determine the transient
operating condition of the machine and to interpret the neural network sensor validation
network outputs in terms of normal, faulty or marginal sensor operation. Neural networks
were developed and trained for increasing, decreasing, and steady-state operating conditions.
These trained networks accepted the non-redundant sensory data and interpreted the non-linear
relationships between them in order to recognize when a sensor reading did not match the
patterns used in the training process. The output of the networks included the sensor
confidence facturs which ranged from zero (faulty sensor) to one (normal sensor). An output
fuzzy logic module interpreted the sensor confidence values to determine when the equipment
operator should be notified of a sensor hardware problem. Trend;,ig the sensor confidence
factors over time is an additional step used to ensure accurate diagnosis of failed sensor
hardware.

Results of the sensor validation scheme when subjected to computer simulated data
representing gas turbine engine sensor hardware measurements was encouraging. The neural
network never predicted sensor failures when measurements stayed within the trained sensor
confidence bands. Also, sensor confidence levels were always predicted to be less than 0.5 if a
sensor measurement drifted more than 500/o outside the sensor confidence bands.
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